Generalized multi-mode bosonic realization of the $S U(1,1)$ algebra and its corresponding squeezing operator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. A: Math. Theor. 43075304
(http://iopscience.iop.org/1751-8121/43/7/075304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.158
The article was downloaded on 03/06/2010 at 08:56

Please note that terms and conditions apply.

Generalized multi-mode bosonic realization of the $S U(1,1)$ algebra and its corresponding squeezing operator

Hong-Chun Yuan ${ }^{1}$, Heng-Mei Li ${ }^{2}$ and Hong-Yi Fan ${ }^{1,2}$
${ }^{1}$ Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
${ }^{2}$ Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
E-mail: yuanhch@sjtu.edu.cn

Received 1 September 2009, in final form 14 December 2009
Published 29 January 2010
Online at stacks.iop.org/JPhysA/43/075304

Abstract

By constructing a generalized multi-partite entangled state representation and introducing the ket-bra integral in this representation, we find a new set of generalized bosonic realization of the generators of the $S U(1,1)$ algebra, which can compose a generalized multi-mode squeezing operator. This operator squeezes the multi-partite entangled state in a natural way. Then the corresponding multi-mode squeezed vacuum states $|r\rangle$ is obtained. Based on this, the variances of the n-mode quadratures and the higher-order squeezing in $|r\rangle$ are evaluated. In addition, we examine the violation of the Bell inequality for $|r\rangle$ by using the formalism of Wigner representation.

PACS numbers: $42.50 .-\mathrm{p}, 03.65 . \mathrm{Ud}$

1. Introduction

It has long been known that the bosonic realizations of the $S U(1,1)$ algebra have applications in many branches of physics and group theory [1-4]. The generators of the $S U(1,1)$ algebra are given by K_{0} and $K_{ \pm}$with the commutative relations

$$
\begin{equation*}
\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm}, \quad\left[K_{-}, K_{+}\right]=2 K_{0} \tag{1}
\end{equation*}
$$

The $S U(1,1)$ Casimir operator is

$$
\begin{equation*}
C=K_{0}^{2}-\frac{1}{2}\left(K_{+} K_{-}+K_{-} K_{+}\right) \tag{2}
\end{equation*}
$$

In particular, the $S U(1,1)$ Lie algebra was widely used in quantum optics [5-7]. For example, the $S U(1,1)$ coherent states, defined by Perelomov [8], have previously been discussed in connection with squeezed states of a single-mode field and are a special case of the two-photon
coherent states of Yuen [9], namely the squeezed vacuum state [10]. The single-mode bosonic realization of $S U(1,1)$ is

$$
\begin{equation*}
K_{+} \rightarrow \frac{a^{\dagger 2}}{2}, \quad K_{-} \rightarrow \frac{a^{2}}{2}, \quad K_{0} \rightarrow \frac{1}{4}\left(2 a^{\dagger} a+1\right) \tag{3}
\end{equation*}
$$

where a^{\dagger} and a are the bosonic creation and annihilation operators, respectively; in this case the Casimir operator is $C=-3 / 16$. The corresponding squeezing operator [10],

$$
\begin{align*}
S_{1}(r) & =\exp \left[\frac{r}{2}\left(a^{\dagger 2}-a^{2}\right)\right] \\
& =\exp \left(\frac{a^{\dagger 2}}{2} \tanh r\right) \exp \left[\left(a^{\dagger} a+\frac{1}{2}\right) \ln \operatorname{sech} r\right] \exp \left(-\frac{a^{2}}{2} \tanh r\right), \tag{4}
\end{align*}
$$

acting on the vacuum state $|0\rangle$ leads to the single-mode squeezed vacuum state

$$
\begin{equation*}
S_{1}(r)|0\rangle=(\operatorname{sech} r)^{1 / 2} \exp \left(\frac{a^{\dagger 2}}{2} \tanh r\right)|0\rangle \tag{5}
\end{equation*}
$$

where r is a real squeezing parameter. The two-mode bosonic realization for $\operatorname{SU}(1,1)$ is

$$
\begin{equation*}
K_{+} \rightarrow a_{1}^{\dagger} a_{2}^{\dagger}, \quad K_{-} \rightarrow a_{1} a_{2}, \quad K_{0} \rightarrow \frac{1}{2}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+1\right) \tag{6}
\end{equation*}
$$

with the Casimir operator $C=\left[\left(a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}\right)^{2}-1\right] / 4$, the two-mode squeezing operator [11]

$$
\begin{align*}
S_{2}(r) & =\exp \left[r\left(a_{1}^{\dagger} a_{2}^{\dagger}-a_{1} a_{2}\right)\right] \\
& =\exp \left(a_{1}^{\dagger} a_{2}^{\dagger} \tanh r\right) \exp \left[\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+1\right) \ln \operatorname{sech} r\right] \exp \left(-a_{1} a_{2} \tanh r\right) \tag{7}
\end{align*}
$$

produces the two-mode squeezed vacuum state

$$
\begin{equation*}
S_{2}(r)|00\rangle=\operatorname{sech} r \exp \left(a_{1}^{\dagger} a_{2}^{\dagger} \tanh r\right)|00\rangle \tag{8}
\end{equation*}
$$

Similarly, for the n-mode case, the squeezing operator is given by $[12,13]$

$$
\begin{equation*}
S_{n}(r)=\exp \left[r\left(W_{+}-W_{-}\right)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{+}=W_{-}^{\dagger}=\frac{2-n}{2 n} \sum_{j=1}^{n} a_{j}^{\dagger 2}+\frac{2}{n} \sum_{j>k=1}^{n} a_{j}^{\dagger} a_{k}^{\dagger}, \tag{10}
\end{equation*}
$$

satisfying a closed $S U(1,1)$ Lie algebra,

$$
\begin{equation*}
\left[W_{-}, W_{+}\right]=2 W_{0}, \quad\left[W_{0}, W_{+}\right]=W_{+}, \quad\left[W_{0}, W_{-}\right]=-W_{-} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{0}=\frac{1}{2} \sum_{j=1}^{n} a_{j}^{\dagger} a_{j}+\frac{n}{4} \tag{12}
\end{equation*}
$$

These squeezing operators may be called $S U(1,1)$ operators and the corresponding squeezed vacuum states are named $S U(1,1)$ coherent states as well. Two interesting questions naturally arise. Are there more generalized bosonic operator realization of $\operatorname{SU}(1,1)$ generators for generalized squeezing operators? If yes, how do we find them? To answer the second question we recall the relation of the two-mode squeezing operator and the bipartite entangled state representation, i.e. in [14] we have proved

$$
\begin{equation*}
S_{2}(r)=\int \frac{\mathrm{d}^{2} \eta}{\mu \pi}\left|\frac{\eta}{\mu}\right\rangle\langle\eta|, \quad \eta=\eta_{1}+\mathrm{i} \eta_{2}, \quad \mathrm{~d}^{2} \eta=\mathrm{d} \eta_{1} \mathrm{~d} \eta_{2} \tag{13}
\end{equation*}
$$

where $\mu=\mathrm{e}^{r}$, and

$$
\begin{equation*}
|\eta\rangle=\exp \left(-\frac{1}{2}|\eta|^{2}+\eta a_{1}^{\dagger}-\eta^{*} a_{2}^{\dagger}+a_{1}^{\dagger} a_{2}^{\dagger}\right)|00\rangle \tag{14}
\end{equation*}
$$

is the common eigenvectors of the relative position $X_{1}-X_{2}$ and the total momentum $P_{1}+P_{2}$ of two particles, i.e.

$$
\begin{equation*}
\left(X_{1}-X_{2}\right)|\eta\rangle=\sqrt{2} \eta_{1}|\eta\rangle, \quad\left(P_{1}+P_{2}\right)|\eta\rangle=\sqrt{2} \eta_{2}|\eta\rangle . \tag{15}
\end{equation*}
$$

It is Einstein-Podolsky-Rosen who first used $\left[X_{1}-X_{2}, P_{1}+P_{2}\right]=0$ to introduce the concept of quantum entanglement [15]. Directly performing the integration over the ket-bra $\left|\frac{\eta}{\mu}\right\rangle\langle\eta|$ by virtue of the technique of integration within an ordered product (IWOP) of operators [16] leads to the right-hand side of equation (7), which shows that the two-mode squeezing operator $S_{2}(r)$ has a natural representation in the entangled state $|\eta\rangle$. Equation (13) shows that by constructing generalized multi-partite entangled state representation we may find the generalized bosonic operator realization of $S U(1,1)$ generators.

The organization of this paper is as follows. In section 2 , we briefly review multipartite entangled state representations $|\chi, \vec{\rho}\rangle$ and $|\rho, \vec{\chi}\rangle$. In section 3, by constructing a ket-bra integral in the $|\chi, \vec{\rho}\rangle$ representation and using the IWOP technique, we derive the generalized n-mode squeezing operator $U_{n}(r)$, which involves bosonic realization of the generalized $S U(1,1)$ generators. We then discuss the transformation properties of a_{i}^{\dagger} and a_{i} under the operation of $U_{n}(r)$ and give the interaction Hamiltonian generating such an $U_{n}(r)$. In section 4 , we evaluate the variances of the n-mode quadratures and higher order squeezing for the generalized n-mode squeezed vacuum state $U_{n}(r)|\overrightarrow{0}\rangle \equiv|r\rangle$. Section 5 is devoted to deriving the expression of the Wigner function of $|r\rangle$ and examining its violation of the Bell inequality by using the formalism of Wigner representation in phase space.

2. Multi-partite entangled state representations

We begin with briefly introducing the multi-partite entangled state representations and listing some of their properties. For an n-partite system, let

$$
\begin{equation*}
X=\sum_{j=1}^{n} \varepsilon_{j} X_{j} \tag{16}
\end{equation*}
$$

denote the center-of-mass coordinate, where $\varepsilon_{j}=m_{j} / M\left(M=\sum_{j=1}^{n} m_{j}\right)$ is the ratio of each particle's mass to the total mass, $\sum_{j=1}^{n} \varepsilon_{j}=1 . X$ is permutable with the mass-weighted relative momentum $\frac{P_{1}}{\varepsilon_{1}}-\frac{P_{j}}{\varepsilon_{j}}(j=2,3, \ldots, n)$, i.e.

$$
\begin{equation*}
\left[X, \frac{P_{1}}{\varepsilon_{1}}-\frac{P_{j}}{\varepsilon_{j}}\right]=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{P_{1}}{\varepsilon_{1}}-\frac{P_{j}}{\varepsilon_{j}}, \frac{P_{1}}{\varepsilon_{1}}-\frac{P_{k}}{\varepsilon_{k}}\right]=0 \quad(j \neq k) \tag{18}
\end{equation*}
$$

where P_{j} is the momentum of particle j. In [17], we have derived the common eigenvector of X and $\frac{P_{1}}{\varepsilon_{1}}-\frac{P_{j}}{\varepsilon_{j}}(j=2,3, \ldots, n)$, in the n-mode Fock space expressed as

$$
\begin{align*}
|\chi, \vec{\rho}\rangle=D_{1} \exp & \left\{\frac{\sqrt{2} \chi}{\lambda} \sum_{j=1}^{n} \varepsilon_{j} a_{j}^{\dagger}+\frac{\mathrm{i} \sqrt{2}}{\lambda} \sum_{j=2}^{n} \varepsilon_{j}^{2} \rho_{j}\left(\sum_{k=1}^{n} \varepsilon_{k} a_{k}^{\dagger}-\frac{\lambda}{\varepsilon_{j}} a_{j}^{\dagger}\right)\right. \\
+ & \left.\sum_{j=1}^{n}\left(\frac{1}{2}-\frac{\varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{\dagger 2}-\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k}^{\dagger} a_{j}^{\dagger}\right\}|\overrightarrow{0}\rangle, \tag{19}
\end{align*}
$$

where $\vec{\rho} \equiv \rho_{2}, \rho_{3}, \ldots, \rho_{n}, \lambda \equiv \sum_{j=1}^{n} \varepsilon_{j}^{2}$ and $|\overrightarrow{0}\rangle$ is the n-mode vacuum state
$D_{1} \equiv \pi^{-n / 4} \sqrt{\frac{\prod_{j=1}^{n} \varepsilon_{j}}{\lambda}} \exp \left[-\frac{1}{2 \lambda}\left(\chi^{2}+\sum_{j=2}^{n} \varepsilon_{j}^{2} \rho_{j}^{2}\left(\lambda-\varepsilon_{j}^{2}\right)-2 \sum_{k>j=2}^{n} \varepsilon_{k}^{2} \varepsilon_{j}^{2} \rho_{k} \rho_{j}\right)\right]$.
In fact, noting

$$
\begin{equation*}
X_{j}=\frac{1}{\sqrt{2}}\left(a_{j}+a_{j}^{\dagger}\right), \quad P_{j}=\frac{1}{\mathrm{i} \sqrt{2}}\left(a_{j}-a_{j}^{\dagger}\right) \tag{21}
\end{equation*}
$$

one can check that $|\chi, \vec{\rho}\rangle$ obeys the eigenvector equations

$$
\begin{equation*}
X|\chi, \vec{\rho}\rangle=\chi|\chi, \vec{\rho}\rangle \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{P_{1}}{\varepsilon_{1}}-\frac{P_{j}}{\varepsilon_{j}}\right)|\chi, \vec{\rho}\rangle=\rho_{j}|\chi, \vec{\rho}\rangle, \quad j=2,3, \ldots, n \tag{23}
\end{equation*}
$$

Using $|\overrightarrow{0}\rangle\langle\overrightarrow{0}|=: \exp \left(-\sum_{j=1}^{n} a_{j}^{\dagger} a_{j}\right):(::$ denotes normal ordering $)$, and the integration with an ordered product of operators (IWOP) technique [16], we can prove that $|\chi, \vec{\rho}\rangle$ really spans an orthogonal and complete set, i.e.

$$
\begin{equation*}
\left\langle\chi^{\prime}, \vec{\rho}^{\prime} \mid \chi, \vec{\rho}\right\rangle=\delta\left(\chi^{\prime}-\chi\right) \delta\left(\rho_{2}^{\prime}-\rho_{2}\right) \cdots \delta\left(\rho_{n}^{\prime}-\rho_{n}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}|\chi, \vec{\rho}\rangle\langle\chi, \vec{\rho}|=1 \tag{25}
\end{equation*}
$$

where $\mathrm{d} \vec{\rho} \equiv \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \cdots \mathrm{~d} \rho_{n}$.
We may also introduce the common eigenvector $|\rho, \vec{\chi}\rangle$ of the operator $P=\sum_{j=1}^{n} \varepsilon_{j} P_{j}$ and $\left(\frac{X_{1}}{\varepsilon_{1}}-\frac{X_{j}}{\varepsilon_{j}}\right)$,

$$
\begin{equation*}
P|\rho, \vec{\chi}\rangle=\rho|\rho, \vec{\chi}\rangle \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{X_{1}}{\varepsilon_{1}}-\frac{X_{j}}{\varepsilon_{j}}\right)|\rho, \vec{\chi}\rangle=\chi_{j}|\rho, \vec{\chi}\rangle, \quad j=2,3, \ldots, n \tag{27}
\end{equation*}
$$

with $\vec{\chi} \equiv \chi_{2}, \chi_{3}, \ldots, \chi_{n}$ and

$$
\begin{align*}
|\rho, \vec{\chi}\rangle=D_{2} \exp & \left\{\frac{\mathrm{i} \sqrt{2} \rho}{\lambda} \sum_{j=1}^{n} \varepsilon_{j} a_{j}^{\dagger}+\frac{\sqrt{2}}{\lambda} \sum_{j=2}^{n} \varepsilon_{j}^{2} \chi_{j}\left(\sum_{k=1}^{n} \varepsilon_{k} a_{k}^{\dagger}-\frac{\lambda}{\varepsilon_{j}} a_{j}^{\dagger}\right)\right. \\
& \left.-\sum_{j=1}^{n}\left(\frac{1}{2}-\frac{\varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{\dagger 2}+\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k}^{\dagger} a_{j}^{\dagger}\right\}|\overrightarrow{0}\rangle \tag{28}
\end{align*}
$$

where
$D_{2} \equiv \pi^{-n / 4} \sqrt{\frac{\prod_{j=1}^{n} \varepsilon_{j}}{\lambda}} \exp \left[-\frac{1}{2 \lambda}\left(\rho^{2}+\sum_{j=2}^{n} \varepsilon_{j}^{2} \chi_{j}^{2}\left(\lambda-\varepsilon_{j}^{2}\right)-2 \sum_{k>j=2}^{n} \varepsilon_{k}^{2} \varepsilon_{j}^{2} \chi_{k} \chi_{j}\right)\right]$,
which obeys the completeness relation $\int_{-\infty}^{+\infty} \mathrm{d} \rho \mathrm{d} \vec{\chi}|\rho, \vec{\chi}\rangle\langle\rho, \vec{\chi}|=1$ with $\mathrm{d} \vec{\chi} \equiv \mathrm{d} \chi_{2} \mathrm{~d} \chi_{3} \cdots \mathrm{~d} \chi_{n}$ as well.

3. Generalized multi-mode $S U(1,1)$ generators and squeezing operator

As we have seen, in the bipartite case the ket-bra integration $\int \frac{\mathrm{d}^{2} \eta}{\mu \pi}\left|\frac{\eta}{\mu}\right\rangle\langle\eta|$ can produce two-mode $S U(1,1)$ generators and form the two-mode squeezing operator (see equations (6) and (7)), so we construct the following ket-bra integral in the $|\chi, \vec{\rho}\rangle$ representation:

$$
\begin{equation*}
U_{n}(\mu)=\mu^{n / 2} \int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}|\mu \chi, \mu \vec{\rho}\rangle\langle\chi, \vec{\rho}| . \tag{30}
\end{equation*}
$$

3.1. Performing the above integration to find $S U(1,1)$ generators

Substituting equation (19) into equation (30) and considering $|\overrightarrow{0}\rangle\langle\overrightarrow{0}|=: \exp \left(-\sum_{j=1}^{n} a_{j}^{\dagger} a_{j}\right)$:, after some lengthy but straightforward calculation we arrive at the following result by virtue of the IWOP technique [16]:

$$
\begin{align*}
U_{n}(\mu)= & \frac{\prod_{j=1}^{n} \varepsilon_{j}}{\lambda}\left(\frac{\mu}{\pi}\right)^{n / 2} \int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}: \exp \left\{-\frac{\mu^{2}+1}{2 \lambda}\left[\chi^{2}+\sum_{j=2}^{n} \varepsilon_{j}^{2} \rho_{j}^{2}\left(\lambda-\varepsilon_{j}^{2}\right)\right.\right. \\
& \left.-2 \sum_{k>j=2}^{n} \varepsilon_{k}^{2} \varepsilon_{j}^{2} \rho_{j} \rho_{k}\right]+\frac{\sqrt{2}}{\lambda} \sum_{j=1}^{n} \varepsilon_{j}\left(\mu a_{j}^{\dagger}+a_{j}\right) \chi+\frac{\mathrm{i} \sqrt{2}}{\lambda} \sum_{j=2}^{n} \varepsilon_{j}^{2} \rho_{j} \\
& \times\left[\sum_{k=1}^{n} \varepsilon_{k}\left(\mu a_{k}^{\dagger}-a_{k}\right)-\frac{\lambda}{\varepsilon_{j}}\left(\mu a_{j}^{\dagger}-a_{j}\right)\right]+\sum_{j=1}^{n}\left(\frac{1}{2}-\frac{\varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{\dagger 2} \\
& \left.-\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k}^{\dagger} a_{j}^{\dagger}+\sum_{j=1}^{n}\left(\frac{1}{2}-\frac{\varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{2}-\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k} a_{j}-\sum_{j=1}^{n} a_{j}^{\dagger} a_{j}\right\}: \\
= & \operatorname{sech}^{n / 2} r: \exp \left\{\left[-\frac{1}{2} \sum_{j=1}^{n}\left(1-\frac{2 \varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{\dagger 2}+\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k}^{\dagger} a_{j}^{\dagger}\right] \tanh r\right. \\
& \left.+(\operatorname{sech} r-1) \sum_{j=1}^{n} a_{j}^{\dagger} a_{j}+\left[\frac{1}{2} \sum_{j=1}^{n}\left(1-\frac{2 \varepsilon_{j}^{2}}{\lambda}\right) a_{j}^{2}-\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k} a_{j}\right] \tanh r\right\}: \\
\equiv & U_{n}(r), \tag{31}
\end{align*}
$$

where $\mu \equiv \mathrm{e}^{r}$, sech $r=2 \mu /\left(\mu^{2}+1\right), \tanh r=\left(\mu^{2}-1\right) /\left(\mu^{2}+1\right)$ and we have used the integral formula

$$
\begin{equation*}
\int \mathrm{d} y \exp \left(-f y^{2}+g y\right)=\left(\frac{\pi}{f}\right)^{1 / 2} \exp \left(\frac{g^{2}}{4 f}\right), \quad(f>0) \tag{32}
\end{equation*}
$$

Using the formula $\exp \left[\left(\mathrm{e}^{v}-1\right) a^{\dagger} a\right]:=\mathrm{e}^{v a^{\dagger} a}$ and letting

$$
\begin{equation*}
V_{+}=V_{-}^{\dagger}=\frac{1}{2} \sum_{j=1}^{n}\left(\frac{2 \varepsilon_{j}^{2}}{\lambda}-1\right) a_{j}^{\dagger 2}+\frac{2}{\lambda} \sum_{k>j=1}^{n} \varepsilon_{k} \varepsilon_{j} a_{k}^{\dagger} a_{j}^{\dagger}, \tag{33}
\end{equation*}
$$

we can simplify equation (31) as

$$
\begin{align*}
U_{n}(r) & =\exp \left(V_{+} \tanh r\right) \exp \left(2 W_{0} \ln \operatorname{sech} r\right) \exp \left(-V_{-} \tanh r\right) \\
& =\exp \left[r\left(V_{+}-V_{-}\right)\right], \tag{34}
\end{align*}
$$

where V_{+}and V_{-}are just the generalized multi-mode bosonic realization of the $S U(1,1)$ algebra,

$$
\begin{equation*}
\left[V_{-}, V_{+}\right]=2 W_{0}, \quad\left[W_{0}, V_{+}\right]=V_{+}, \quad\left[W_{0}, V_{-}\right]=-V_{-} \tag{35}
\end{equation*}
$$

here W_{0} has been defined in equation (12). In particular, when $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{n}=\frac{1}{n}$ and $\lambda=\frac{1}{n}$,

$$
\begin{equation*}
V_{+}=W_{+} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}(r) \rightarrow S_{n}(r) \tag{37}
\end{equation*}
$$

Therefore, we can call $U_{n}(r)$ the generalized multi-mode $S U(1,1)$ squeezing operator. From equations (24) and (30), we see

$$
\begin{equation*}
U_{n}(\mu)|\chi, \vec{\rho}\rangle=\mu^{n / 2}|\mu \chi, \mu \vec{\rho}\rangle \tag{38}
\end{equation*}
$$

thus $|\chi, \vec{\rho}\rangle$ is a natural representation for the squeezing operator $U_{n}(r)$.

3.2. The behavior under $U_{n}(r)$ transformation

In order to simplify the form of V_{+}in equation (33), we introduce the symmetric matrix G

$$
G=\left(\begin{array}{cccc}
\frac{2 \varepsilon_{1}^{2}}{\lambda}-1 & \frac{2}{\lambda} \varepsilon_{1} \varepsilon_{2} & \cdots & \frac{2}{\lambda} \varepsilon_{1} \varepsilon_{n} \tag{39}\\
\frac{2}{\lambda} \varepsilon_{2} \varepsilon_{1} & \frac{2 \varepsilon_{2}^{2}}{\lambda}-1 & \cdots & \frac{2}{\lambda} \varepsilon_{2} \varepsilon_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{2}{\lambda} \varepsilon_{n} \varepsilon_{1} & \frac{2}{\lambda} \varepsilon_{n} \varepsilon_{2} & \cdots & \frac{2 \varepsilon_{n}^{2}}{\lambda}-1
\end{array}\right)_{n \times n}
$$

which obeys

$$
\begin{equation*}
G^{2}=I, \quad \sum_{j, k=1}^{n} G_{j k}=\frac{2}{\lambda}-n \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{e}^{r G}=I \cosh r+G \sinh r . \tag{41}
\end{equation*}
$$

With the help of G, V_{+}is re-expressed as

$$
\begin{equation*}
V_{+}=\frac{1}{2} a_{j}^{\dagger} G_{j k} a_{k}^{\dagger} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}(r)=\exp \left[\frac{r}{2}\left(a_{j}^{\dagger} G_{j k} a_{k}^{\dagger}-a_{j} G_{j k} a_{k}\right)\right] ; \tag{43}
\end{equation*}
$$

here and henceforth the repeated indices imply the Einstein summation notation.
Therefore, due to equations (43) and (41), using the Baker-Hausdorff formula

$$
\begin{equation*}
\mathrm{e}^{A} B \mathrm{e}^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\cdots, \tag{44}
\end{equation*}
$$

and $\left[a_{j}, a_{k}^{\dagger}\right]=\delta_{j k}$, we have

$$
\begin{equation*}
U_{n}^{-1}(r) a_{j} U_{n}(r)=a_{j} \cosh r+a_{k}^{\dagger} G_{k j} \sinh r \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}^{-1}(r) a_{j}^{\dagger} U_{n}(r)=a_{j}^{\dagger} \cosh r+a_{k} G_{k j} \sinh r . \tag{46}
\end{equation*}
$$

It then follows

$$
\begin{equation*}
U_{n}^{-1}(r) X_{j} U_{n}(r)=X_{j} \cosh r+X_{k} G_{k j} \sinh r=X_{k}\left(\mathrm{e}^{r G}\right)_{k j}, \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}^{-1}(r) P_{j} U_{n}(r)=P_{j} \cosh r-P_{k} G_{k j} \sinh r=P_{k}\left(\mathrm{e}^{-r G}\right)_{k j} \tag{48}
\end{equation*}
$$

We can further check

$$
\begin{equation*}
U_{n}^{-1}(r) X U_{n}(r)=\varepsilon_{j} X_{j} \cosh r+\varepsilon_{j} X_{k} G_{k j} \sinh r, \tag{49}
\end{equation*}
$$

where

$$
\begin{align*}
\varepsilon_{j} X_{k} G_{k j}= & \varepsilon_{j} G_{j k} X_{k} \\
= & \left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)\left(\begin{array}{cccc}
\frac{2 \varepsilon_{1}^{2}}{\lambda}-1 & \frac{2}{\lambda} \varepsilon_{1} \varepsilon_{2} & \cdots & \frac{2}{\lambda} \varepsilon_{1} \varepsilon_{n} \\
\frac{2}{\lambda} \varepsilon_{2} \varepsilon_{1} & \frac{2 \varepsilon_{2}^{2}}{\lambda}-1 & \cdots & \frac{2}{\lambda} \varepsilon_{2} \varepsilon_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{2}{\lambda} \varepsilon_{n} \varepsilon_{1} & \frac{2}{\lambda} \varepsilon_{n} \varepsilon_{2} & \cdots & \frac{2 \varepsilon_{n}^{2}}{\lambda}-1
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right) \\
= & \varepsilon_{1}\left[\left(\frac{2 \varepsilon_{1}^{2}}{\lambda}-1\right) X_{1}+\frac{2}{\lambda} \varepsilon_{1} \varepsilon_{2} X_{2}+\cdots+\frac{2}{\lambda} \varepsilon_{1} \varepsilon_{n} X_{n}\right] \\
& +\varepsilon_{2}\left[\frac{2}{\lambda} \varepsilon_{2} \varepsilon_{1} X_{1}+\left(\frac{2 \varepsilon_{2}^{2}}{\lambda}-1\right) X_{2}+\cdots+\frac{2}{\lambda} \varepsilon_{2} \varepsilon_{n} X_{n}\right] \\
& +\cdots+\varepsilon_{n}\left[\frac{2}{\lambda} \varepsilon_{n} \varepsilon_{1} X_{1}+\frac{2}{\lambda} \varepsilon_{n} \varepsilon_{2} X_{2}+\cdots+\left(\frac{2 \varepsilon_{n}^{2}}{\lambda}-1\right) X_{n}\right] \\
= & \left(\varepsilon_{1} X_{1}+\varepsilon_{2} X_{2}+\cdots+\varepsilon_{n} X_{n}\right)\left(\frac{2 \varepsilon_{1}^{2}}{\lambda}-1+\frac{2 \varepsilon_{2}^{2}}{\lambda}+\cdots+\frac{2 \varepsilon_{n}^{2}}{\lambda}\right) \\
= & X ; \tag{50}
\end{align*}
$$

in the last step we have used $\lambda \equiv \sum_{j=1}^{n} \varepsilon_{j}^{2}$. Thus $U_{n}^{-1}(r) X U_{n}(r)=\mu X$, as expected. In fact, considering equations (22), (24) and (25), we can prove that

$$
\begin{align*}
U_{n}^{-1}(r) X U_{n}(r) & =\mu^{n} \int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}|\chi, \vec{\rho}\rangle\langle\mu \chi, \mu \vec{\rho}| X \int_{-\infty}^{+\infty} \mathrm{d} \chi^{\prime} \mathrm{d} \vec{\rho}^{\prime}\left|\mu \chi^{\prime}, \mu \vec{\rho}^{\prime}\right\rangle\left\langle\chi^{\prime}, \vec{\rho}^{\prime}\right| \\
& =\mu^{n} \mu \chi \int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}|\chi, \vec{\rho}\rangle\langle\mu \chi, \mu \vec{\rho}| \int_{-\infty}^{+\infty} \mathrm{d} \chi^{\prime} \mathrm{d} \vec{\rho}^{\prime}\left|\mu \chi^{\prime}, \mu \vec{\rho}^{\prime}\right\rangle\left\langle\chi^{\prime}, \vec{\rho}^{\prime}\right| \\
& =\mu \int_{-\infty}^{+\infty} \mathrm{d} \chi \mathrm{~d} \vec{\rho}|\chi, \vec{\rho}\rangle\langle\chi, \vec{\rho}| \chi \\
& =\mu X . \tag{51}
\end{align*}
$$

3.3. The interaction Hamiltonian

Next, we seek the interaction Hamiltonian which can generate such a $U_{n}(r)$. For this purpose, we differentiate the two sides of equation (43) with respect to t and obtain

$$
\begin{equation*}
\mathrm{i} \frac{\partial U_{n}(r)}{\partial t}=\frac{\mathrm{i}}{2}\left(a_{j}^{\dagger} G_{j k} a_{k}^{\dagger}-a_{j} G_{j k} a_{k}\right) \frac{\partial r}{\partial t} U_{n}(r) \tag{52}
\end{equation*}
$$

with $\left.U_{n}(r)\right|_{t=0}=1$, so the interaction Hamiltonian is

$$
\begin{equation*}
H_{I}(t)=\frac{\mathrm{i}}{2}\left[a_{j}^{\dagger} G_{j k} a_{k}^{\dagger}-a_{j} G_{j k} a_{k}\right] \frac{\partial r}{\partial t} \tag{53}
\end{equation*}
$$

Such a dynamic process may happen in some $2 n$-wave mixing processes; for the four-wave mixing we refer to the pioneering paper of Yuen and Shapiro [18].

4. Generalized multi-mode $S U(1,1)$ squeezed vacuum states

Acting the operator $U_{n}(r)$ in equation (31) on the n-mode vacuum state $|\overrightarrow{0}\rangle$ and using $: F\left(a_{i}^{\dagger}, a_{j}\right):|\overrightarrow{0}\rangle=F\left(a_{i}^{\dagger}, 0\right)|\overrightarrow{0}\rangle$, we obtain the n-mode squeezed vacuum state

$$
\begin{equation*}
|r\rangle \equiv U_{n}(r)|\overrightarrow{0}\rangle=\operatorname{sech}^{n / 2} r \exp \left(V_{+} \tanh r\right)|\overrightarrow{0}\rangle \tag{54}
\end{equation*}
$$

where V_{+}has been defined in equation (33). Now we evaluate the variances of two n-mode quadratures which are defined as [10]

$$
\begin{equation*}
X_{0}=\frac{1}{\sqrt{2 n}} \sum_{j=1}^{n} X_{j}, \quad P_{0}=\frac{1}{\sqrt{2 n}} \sum_{j=1}^{n} P_{j} \tag{55}
\end{equation*}
$$

which obey the relations

$$
\begin{equation*}
\left[X_{0}, P_{0}\right]=\frac{1}{2} \mathrm{i} \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle \geqslant \frac{1}{16} \tag{57}
\end{equation*}
$$

where $\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle \equiv\left\langle X_{0}^{2}\right\rangle-\left\langle X_{0}\right\rangle^{2}$. Due to equations (47) and (48), we know that the expectation values of X_{0} and P_{0} in $|r\rangle,\langle r| X_{0}|r\rangle=\langle r| P_{0}|r\rangle=0$, so their variances are

$$
\begin{align*}
\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle & =\langle r| X_{0}^{2}|r\rangle=\langle\overrightarrow{0}| U_{n}^{-1}(r) X_{0} U_{n}(r) U_{n}^{-1}(r) X_{0} U_{n}(r)|\overrightarrow{0}\rangle \\
& =\frac{1}{2 n} \sum_{j=1}^{n}\left(\mathrm{e}^{r G}\right)_{k j} \sum_{i=1}^{n}\left(\mathrm{e}^{r G}\right)_{l i}\langle\overrightarrow{0}| X_{k} X_{l}|\overrightarrow{0}\rangle \\
& =\frac{1}{4 n} \sum_{i, j=1}^{n}\left(\mathrm{e}^{2 r G}\right)_{i j} \tag{58}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle & =\langle r| P_{0}^{2}|r\rangle=\frac{1}{2 n} \sum_{j=1}^{n}\left(\mathrm{e}^{-r G}\right)_{k j} \sum_{i=1}^{n}\left(\mathrm{e}^{-r G}\right)_{l i}\langle\overrightarrow{0}| P_{k} P_{l}|\overrightarrow{0}\rangle \\
& =\frac{1}{4 n} \sum_{i, j=1}^{n}\left(\mathrm{e}^{-2 r G}\right)_{i j} . \tag{59}
\end{align*}
$$

According to equation (40),

$$
\begin{align*}
\sum_{j, k=1}^{n}\left(\mathrm{e}^{2 r G}\right)_{j k} & =\sum_{l=0}^{\infty} \frac{(2 r)^{l}}{l!} \sum_{j, k=1}^{n}\left(G^{l}\right)_{j k} \\
& =n \cosh 2 r+\left(\frac{2}{\lambda}-n\right) \sinh 2 r \\
& =\frac{1}{\lambda} \mathrm{e}^{2 r}+\left(n-\frac{1}{\lambda}\right) \mathrm{e}^{-2 r}, \tag{60}
\end{align*}
$$

Figure 1. Variances of quadratures in the two-mode state $|r\rangle(n=2)$ as a function of r for different parameters ε_{i} and λ as follows: $\varepsilon_{1}=\varepsilon_{2}=\frac{1}{2}, \lambda=\frac{1}{2}$ (solid line); $\varepsilon_{1}=\frac{1}{3}, \varepsilon_{2}=\frac{2}{3}, \lambda=\frac{5}{9}$ (dashed line) and $\varepsilon_{1}=\frac{1}{4}, \varepsilon_{2}=\frac{3}{4}, \lambda=\frac{5}{8}$ (dotted line).

So

$$
\begin{equation*}
\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle=\frac{1}{4 n \lambda} \mathrm{e}^{2 r}+\left(\frac{1}{4}-\frac{1}{4 n \lambda}\right) \mathrm{e}^{-2 r} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle=\frac{1}{4 n \lambda} \mathrm{e}^{-2 r}+\left(\frac{1}{4}-\frac{1}{4 n \lambda}\right) \mathrm{e}^{2 r} \tag{62}
\end{equation*}
$$

Because $\lambda \equiv \sum_{j=1}^{n} \varepsilon_{j}^{2}, \varepsilon_{j}=m_{j} / M<1, \sum_{j=1}^{n} \varepsilon_{j}=1$, according to the well-known inequality $\sqrt{\frac{\sum_{j=0}^{n} \varepsilon_{j}^{2}}{n}} \geqslant \frac{\sum_{j=0}^{n} \varepsilon_{j}}{n}$, i.e. $\frac{1}{n} \leqslant \lambda<1$, we have

$$
\begin{align*}
\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle & =\frac{1}{16}-\frac{1}{8 n \lambda}+\frac{1}{8 n^{2} \lambda^{2}}+\left(\frac{1}{8 n \lambda}-\frac{1}{8 n^{2} \lambda^{2}}\right) \cosh 4 r \\
& \geqslant \frac{1}{16} \tag{63}
\end{align*}
$$

which agrees with equation (57). Especially, when $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{n}=\frac{1}{n} \rightarrow \lambda=\frac{1}{n}$, both equations (61) and (62) recover as the standard form

$$
\begin{equation*}
\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle=\frac{1}{4} \mathrm{e}^{2 r}, \quad\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle=\frac{1}{4} \mathrm{e}^{-2 r} \tag{64}
\end{equation*}
$$

In figures 1 and 2, we plot the graph of the variances $\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle$ and $\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle$ in the state $|r\rangle$ for the $n=2$ and $n=3$ cases, respectively. It is shown from figures 1 and 2 that the variances are sensitive to the different parameters ε_{i} and λ and for $r>0,\left\langle\left(\Delta X_{0}\right)^{2}\right\rangle$ is always more than $\frac{1}{4}$ and $\left\langle\left(\Delta P_{0}\right)^{2}\right\rangle$ is always less than $\frac{1}{4}$, while for $r<0$ the case is quite the contrary. Thus, for the generalized states $|r\rangle$, there exists a squeezing effect.

The concept of higher-order squeezing [19] is another aspect for revealing nonclassical characters of a quantum state. When the $2 m$-th moment in a state is less than that in the vacuum state, this state is said to be squeezed to order $2 m$. Using equation (55), we now calculate the $2 m$-th moment of the n-mode quadrature X_{0} in the state $|r\rangle$,

$$
\begin{align*}
\left\langle\left(\Delta X_{0}\right)^{2 m}\right\rangle & =\langle r|\left(\Delta X_{0}\right)^{2 m}|r\rangle=\langle\overrightarrow{0}| U_{n}^{-1}(r)\left(\Delta X_{0}\right)^{2 m} U_{n}(r)|\overrightarrow{0}\rangle \\
& =\left(\frac{1}{4 n}\right)^{m}\langle\overrightarrow{0}|\left\{\Delta \sum_{j=1}^{n}\left[\left(\mathrm{e}^{r G}\right)_{j k}\left(a_{k}+a_{k}^{\dagger}\right)\right]\right\}^{2 m}|\overrightarrow{0}\rangle . \tag{65}
\end{align*}
$$

Figure 2. Variances of quadratures in the three-mode state $|r\rangle(n=3)$ as a function of r for different parameters ε_{i} and λ as follows: $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\frac{1}{3}, \lambda=\frac{1}{3}$ (solid line); $\varepsilon_{1}=\varepsilon_{2}=\frac{1}{4}$, $\varepsilon_{3}=\frac{1}{2}, \lambda=\frac{3}{8}$ (dashed line) and $\varepsilon_{1}=\frac{1}{6}, \varepsilon_{2}=\frac{1}{3}, \varepsilon_{3}=\frac{1}{2}, \lambda=\frac{7}{18}$ (dotted line).

Note that the formula [20]

$$
\begin{equation*}
(\Delta F)^{2 m}=\sum_{k=0}^{m} \frac{(2 m)!}{(2 m-2 k)!k!}:(\Delta F)^{2 m-2 k}:\left(\frac{\sum_{j=1}^{n} \xi_{j} \zeta_{j}}{2}\right)^{k} \tag{66}
\end{equation*}
$$

where $\Delta F \equiv F-\langle F\rangle$ with $F=\sum_{j=1}^{n}\left(\xi_{j} a_{j}+\zeta_{j} a_{j}^{\dagger}\right)$. Letting $Q=\sum_{j=1}^{n}\left[\left(\mathrm{e}^{r G}\right)_{j k}\left(a_{k}+a_{k}^{\dagger}\right)\right]$ and using equation (60), we obtain

$$
\begin{equation*}
(\Delta Q)^{2 m}=\sum_{k=0}^{m} \frac{(2 m)!}{(2 m-2 k)!k!}:(\Delta Q)^{2 m-2 k}:\left(\frac{\frac{1}{\lambda} \mathrm{e}^{2 r}+\left(n-\frac{1}{\lambda}\right) \mathrm{e}^{-2 r}}{2}\right)^{k} \tag{67}
\end{equation*}
$$

By substituting equation (67) into equation (65), and using $\langle\overrightarrow{0}|(\Delta Q)^{2 m-2 k}|\overrightarrow{0}\rangle=\delta_{m k}$, equation (67) becomes

$$
\begin{equation*}
\left\langle\left(\Delta X_{0}\right)^{2 m}\right\rangle=\left(\frac{1}{4}\right)^{m}(2 m-1)!!\left(\frac{1}{n \lambda} \mathrm{e}^{2 r}+\left(1-\frac{1}{n \lambda}\right) \mathrm{e}^{-2 r}\right)^{m} \tag{68}
\end{equation*}
$$

where $(2 m-1)!!=1 \cdot 3 \cdot 5 \cdots(2 m-1)$. Similarly, we have

$$
\begin{equation*}
\left\langle\left(\Delta P_{0}\right)^{2 m}\right\rangle=\left(\frac{1}{4}\right)^{m}(2 m-1)!!\left(\frac{1}{n \lambda} \mathrm{e}^{-2 r}+\left(1-\frac{1}{n \lambda}\right) \mathrm{e}^{2 r}\right)^{m} \tag{69}
\end{equation*}
$$

It is clear that when $m=1$, equations (68) and (69) reduce to equations (61) and (62), respectively. In order to see clearly the variations of the $2 m$-th moment of quadratures in $|r\rangle$, the figures are plotted in figure 3 for several different m values, respectively, where we only consider the three-mode case, namely, $n=3$. From figure 3, for the 4 th moment of quadratures, when $r>0(r<0),\left(\Delta X_{0}\right)^{4}>\frac{3}{16}\left(\left(\Delta X_{0}\right)^{4}<\frac{3}{16}\right)$ and $\left(\Delta P_{0}\right)^{4}<\frac{3}{16}$ $\left(\left(\Delta P_{0}\right)^{4}>\frac{3}{16}\right)$, which implies that $|r\rangle$ is squeezed to ordered 4. In fact, for the other case, the results are similar, so $|r\rangle$ is squeezed not merely to the second order but to all higher orders.

5. Violation of the Bell inequality for the state $|r\rangle$

In this section, we examine the violation of the Bell inequality for the state $|r\rangle$ by using the formalism of the Wigner representation in phase space based on the parity operator and

Figure 3. $2 m$-th moment of quadratures in the three-mode state $|r\rangle(n=3)$ as a function of r for several different $m=2,3,4$ values, respectively.
the displacement operation. Wigner function representation of the Bell inequality has been developed using a parity operator as a quantum observable [21-23].

For the multi-mode system, the correlation function is the expectation of the operator

$$
\begin{equation*}
\Pi(\vec{\alpha})=\stackrel{\bigotimes}{j=1}_{\otimes} \Pi_{j}\left(\alpha_{j}\right)=\bigotimes_{j=1}^{n} D_{j}\left(\alpha_{j}\right)(-1)^{N_{j}} D_{j}^{\dagger}\left(\alpha_{j}\right), \tag{70}
\end{equation*}
$$

which is an equivalent definition of the Wigner operator [21-24]; the corresponding Wigner function is

$$
\begin{equation*}
W(\vec{x}, \vec{p})=W(\vec{\alpha})=\frac{1}{\pi^{n}}\langle\Pi(\vec{\alpha})\rangle, \tag{71}
\end{equation*}
$$

where $\vec{x} \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right), \vec{p} \equiv\left(p_{1}, p_{2}, \ldots, p_{n}\right), \vec{\alpha}=\frac{1}{\sqrt{2}}(\vec{x}+\mathrm{i} \vec{p}) \equiv\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ and $D_{j}\left(\alpha_{j}\right)=\exp \left(\alpha_{j} a_{j}^{\dagger}-\alpha_{j}^{*} a_{j}\right)$ is a displacement operator. $(-1)^{N_{j}}$ corresponds to the measurement of an even $(+1)$ or an odd (-1) number of photons in mode j. Within the framework of local realistic theories, the Wigner representation of the Bell inequality is of the form [25-27]

$$
\begin{equation*}
|B(n)| \leqslant 2, \tag{72}
\end{equation*}
$$

where $B(n)$ is a combination of $W(\vec{\alpha})$. For example, for the two-mode case, i.e. $n=2$, the Bell inequality is expressed as

$$
\begin{equation*}
B(2)=\pi^{2}\left[W\left(\alpha_{1}, \alpha_{2}\right)+W\left(\alpha_{1}^{\prime}, \alpha_{2}\right)+W\left(\alpha_{1}, \alpha_{2}^{\prime}\right)-W\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)\right], \tag{73}
\end{equation*}
$$

while for $n=3$,
$B(3)=\pi^{3}\left[W\left(\alpha_{1}, \alpha_{2}, \alpha_{3}^{\prime}\right)+W\left(\alpha_{1}, \alpha_{2}^{\prime}, \alpha_{3}\right)+W\left(\alpha_{1}^{\prime}, \alpha_{2}, \alpha_{3}\right)-W\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)\right]$.
In order to examine the violation of the Bell inequality for the state $|r\rangle$, we first calculate the Wigner function of the state $|r\rangle$. Remember that the Weyl ordered form of the n-mode Wigner operator is expressed as [28]

$$
\Delta(\vec{x}, \vec{p})=\stackrel{\otimes}{\otimes=1}_{n}^{\otimes} \Delta_{j}\left(x_{j}, p_{j}\right)=\begin{align*}
& : \delta(\vec{x}-\vec{X}) \delta(\vec{p}-\vec{P}): \tag{75}\\
& :
\end{align*}
$$

where $\vec{X} \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right), \vec{P} \equiv\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ and :: denotes the Weyl ordering. The normally ordered form of $\Delta(\vec{x}, \vec{p})$ is [24]

$$
\begin{equation*}
\Delta(\vec{x}, \vec{p})=\frac{1}{\pi^{n}}: \exp \left[-(\vec{x}-\vec{X})^{2}-(\vec{p}-\vec{P})^{2}\right]: \tag{76}
\end{equation*}
$$

Then according to the Weyl ordering invariance under similar transformations [29] and the Weyl quantization rule, using equations (47) and (48), we have

$$
\begin{align*}
& \left.U_{n}^{-1}(r) \Delta(\vec{x}, \vec{p}) U_{n}(r)=\begin{array}{c}
: \\
: \\
i x \\
x
\end{array} U_{n}^{-1}(r) \vec{X} U_{n}(r)\right] \delta\left[\vec{p}-U_{n}^{-1}(r) \vec{P} U_{n}(r)\right]: \\
& =: \delta\left(\vec{x}-\mathrm{e}^{r G} \vec{X}\right) \delta\left(\vec{p}-\mathrm{e}^{-r G} \vec{P}\right): \\
& =: \delta\left(\mathrm{e}^{-r G} \vec{\chi}-\vec{X}\right) \delta\left(\mathrm{e}^{r G} \vec{p}-\vec{P}\right): \\
& =\Delta\left(\mathrm{e}^{-r G} \vec{x}, \mathrm{e}^{r G} \vec{p}\right) \text {. } \tag{77}
\end{align*}
$$

Thus using equations (76) and (77), the Wigner function of $|r\rangle$ is

$$
\begin{align*}
W(\vec{x}, \vec{p}) & =\langle\overrightarrow{0}| U_{n}^{-1}(r) \Delta(\vec{x}, \vec{p}) U_{n}(r)|\overrightarrow{0}\rangle \\
& =\frac{1}{\pi^{n}}\langle\overrightarrow{0}|: \exp \left[-\left(\mathrm{e}^{-r G} \vec{x}-\vec{X}\right)^{2}-\left(\mathrm{e}^{r G} \vec{p}-\vec{P}\right)^{2}\right]:|\overrightarrow{0}\rangle \\
& =\frac{1}{\pi^{n}} \exp \left[-x_{j}\left(\mathrm{e}^{-2 r G}\right)_{j k} x_{k}-p_{j}\left(\mathrm{e}^{2 r G}\right)_{j k} p_{k}\right] . \tag{78}
\end{align*}
$$

Considering equations (39) and (41) and $x_{j}=\frac{1}{\sqrt{2}}\left(\alpha_{j}+\alpha_{j}^{*}\right), p_{j}=\frac{1}{i \sqrt{2}}\left(\alpha_{j}-\alpha_{j}^{*}\right)$, equation (78) can be rewritten as

$$
\begin{align*}
W(\vec{x}, \vec{p})= & \frac{1}{\pi^{n}} \exp \left[-\sum_{j=1}^{n}\left(x_{j}^{2}+p_{j}^{2}\right) \cosh 2 r+\sum_{j=1}^{n}\left(\frac{2 \varepsilon_{j}^{2}}{\lambda}-1\right)\left(x_{j}^{2}-p_{j}^{2}\right) \sinh 2 r\right. \\
& \left.+\frac{4}{\lambda} \sum_{j>k=1}^{n} \varepsilon_{j} \varepsilon_{k}\left(x_{j} x_{k}-p_{j} p_{k}\right) \sinh 2 r\right] \\
= & \frac{1}{\pi^{n}} \exp \left[-2 \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2} \cosh 2 r+\sum_{j=1}^{n}\left(\frac{2 \varepsilon_{j}^{2}}{\lambda}-1\right)\left(\alpha_{j}^{2}+\alpha_{j}^{* 2}\right) \sinh 2 r\right. \\
& \left.+\frac{4}{\lambda} \sum_{j>k=1}^{n} \varepsilon_{j} \varepsilon_{k}\left(\alpha_{j} \alpha_{k}+\alpha_{j}^{*} \alpha_{k}^{*}\right) \sinh 2 r\right] \equiv W(\vec{\alpha}) . \tag{79}
\end{align*}
$$

Especially, when $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{n}=\frac{1}{n} \rightarrow \lambda=\frac{1}{n}$,

$$
\begin{align*}
W_{n}(\vec{\alpha})=\frac{1}{\pi^{n}} & \exp \\
& +\left(-2 \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2} \cosh 2 r+\frac{4}{n} \sum_{j>k=1}^{n}\left(\alpha_{j} \alpha_{k}+\alpha_{j}^{*} \alpha_{k}^{*}\right) \sinh 2 r\right. \tag{80}\\
& \left.\sum_{j=1}^{n}\left(\alpha_{j}^{2}+\alpha_{j}^{* 2}\right) \sinh 2 r\right]
\end{align*}
$$

which is the same as the result of equation (16) given in [12].
For the $n=2$ case, we examine the violation of the Bell inequality where $\varepsilon_{1}=\varepsilon_{2}=\frac{1}{2}$, $\alpha_{1}=\alpha_{2}=0$ and $\alpha_{1}^{\prime}=-\alpha_{2}^{\prime}=b$ (b is a positive constant associated with the displacement magnitude). From these quantities, considering equations (73) and (80) and in the limit of large $r\left(\cosh 2 r \simeq \mathrm{e}^{-2 r} / 2\right)$ as well as small b, we obtain the following equation:

$$
\begin{align*}
B(2) & =\pi^{2}[W(0,0)+W(b, 0)+W(0,-b)-W(b,-b)] \\
& =1+2 \exp \left(-2 b^{2} \cosh 2 r\right)-\exp \left(-4 b^{2} \mathrm{e}^{2 r}\right) \\
& \simeq 1+2 \exp \left(-b^{2} \mathrm{e}^{2 r}\right)-\exp \left(-4 b^{2} \mathrm{e}^{2 r}\right), \tag{81}
\end{align*}
$$

Figure 4. Violation of the Bell inequality $B(3)$ for the three-mode state $|r\rangle(n=3)$ by using parity measurements with $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\frac{1}{3}, \alpha_{1}=\alpha_{2}=\alpha_{3}^{\prime}=0, \alpha_{3}=-b$ and $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=b$, where $b=0.05$ (solid line), $b=0.5$ (dashed line) and $b=3$ (dotted line).
which is maximized for $b^{2} \mathrm{e}^{2 r}=\frac{1}{3} \ln 2: B(2)_{\max }=2.19$. This is a clear violation of the inequality $|B(2)| \leqslant 2$.

Taking $n=3$ as another example, from equation (74) the Bell inequality equation has 12 variables, and it is highly nontrivial to find the global maximum values of $B(3)$ for all 12 variables. Fortunately, some local maximum values which violate the Bell inequality can be found numerically using the method of steepest descent. For this purpose, in figure 4 we plot the maximal Bell violation as a function of r, where $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\frac{1}{3}, \alpha_{1}=\alpha_{2}=\alpha_{3}^{\prime}=0$, $\alpha_{3}=-b$ and $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=b$. It is clear from figure 4 that the maximal-Bell violation increases with the squeezing parameter $|r|$ with $r<0$ and the maximal value of $B(3)$ reaches 3 , which implies that the Bell inequality for the three-mode case is violated. These results can be confirmed analytically. In fact, we put the above-chosen combinations into equation (74). For large $|r|$ with $r<0, \cosh 2 r \rightarrow \mathrm{e}^{-2 r} / 2$ and $\sinh 2 r \rightarrow-\mathrm{e}^{-2 r} / 2$. After some calculation, $B(3)$ equals $3-\exp \left(-\frac{8}{3} \mathrm{e}^{-2 r} b^{2}\right)$. When $\mathrm{e}^{-2 r} b^{2}$ is large enough, $B(3) \rightarrow 3$.

6. Conclusions

In summary, by constructing the generalized multi-partite entangled state representation and introducing the ket-bra integral in this representation, we find a new set of generalized bosonic realization of the $S U(1,1)$ algebra, which can compose the generalized multi-mode squeezing operator $U_{n}(r)$. The intrinsic relation between the multi-mode entangled states of continuum variables and squeezing operator is clearly shown. The explicit multi-mode squeezed vacuum state $|r\rangle$ is obtained; the variances of the n-mode quadratures and higher-order squeezing for $|r\rangle$ are examined; the violation of the Bell inequality of $|r\rangle$ is examined. Finally, we mention that the new squeezing operator may be applied to the quantum theory of multi-photon absorption and emission in nonlinear optical processes, or tackling Bose-Einstein condensation in dilute gases, or deriving the ground state of trapped bosons, or obtaining collective modes in nuclear physics.

Acknowledgments

We sincerely acknowledge the referees for helpful suggestions. This work was supported by the National Natural Science Foundation of China under grant numbers 10775097 and 10874174.

References

[1] Banerji J and Agarwal G S 1999 Phys. Rev. A 594777 Banerji J and Agarwal G S 1999 Opt. Express 5220
[2] Fan H Y and Lu H L 2006 Int. J. Theor. Phys. 45641
[3] Klimov A B and Romero J L 2008 J. Phys. A: Math. Theor. 41055303
[4] Aniello P and Cagli R C 2005 J. Opt. B: Quantum Semiclass. Opt. 7711
[5] Wódkiewicz K and Eberly J H 1985 J. Opt. Soc. Am. B 2458
[6] Wünsche A 2000 J. Opt. B: Quantum Semiclass. Opt. 273
[7] Gerry C C 1991 J. Opt. Soc. Am. B 8685 Gerry C C 1985 Phys. Rev. A 312721
[8] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer) Perelomov A M 1975 Commun. Math. Phys. 40153
[9] Yuen H P 1976 Phys. Rev. A 132226
[10] Loudon R and Knight P L 1987 J. Mod. Opt. 34709
[11] Barnett S M and Knight P L 1987 J. Mod. Opt. 34841
[12] Wu C F, Chen J L, Kwek L C, Oh C H and Xue K 2005 Phys. Rev. A 71022110
[13] Jiang N Q 2005 J. Opt. B: Quantum Semiclass. Opt. 7264
[14] Fan H Y and Fan Y 1996 Phys. Rev. A 54958
[15] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47777
[16] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147 Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11 Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321480
[17] Li H M and Yuan H C 2008 Commun. Theor. Phys. 50615 Xu Y J, Fan H Y and Liu Q Y 2009 Int. J. Theor. Phys. 482050
[18] Yuen H P and Shapiro J H 1979 Opt. Lett. 4334
[19] Hong C K and Mandel L 1985 Phys. Rev. Lett. 54323 Hong C K and Mandel L 1985 Phys. Rev. A 32974
[20] Zhang Z X and Fan H Y 1993 Quantum Opt. 5149
[21] Jacobsen S H and Jarvis P D 2008 J. Phys. A: Math. Theor. 41365301
[22] Banaszek K and Wódkiewicz K 1998 Phys. Rev. A 584345 Banaszek K and Wódkiewicz K 1999 Phys. Rev. Lett. 822009
[23] Jeong H and An N B 2006 Phys. Rev. A 74022104
[24] Fan H Y and Ruan T N 1984 Commun. Theor. Phys. 3345 Fan H Y 1987 Phys. Lett. A 124303
[25] van Loock P and Braunstein S L 2001 Phys. Rev. A 63022106
[26] Bell J S 1964 Physics 1195
[27] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 543824
[28] Fan H Y 1992 J. Phys. A: Math. Gen. 253443 Fan H Y and Fan Y 2002 Int. J. Mod. Phys. A 17701
[29] Fan H Y 2003 Commun. Theor. Phys. 40409 Fan H Y and Wang J S 2005 Mod. Phys. Lett. A 201525

