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Abstract
By constructing a generalized multi-partite entangled state representation
and introducing the ket-bra integral in this representation, we find a new
set of generalized bosonic realization of the generators of the SU(1, 1)

algebra, which can compose a generalized multi-mode squeezing operator.
This operator squeezes the multi-partite entangled state in a natural way. Then
the corresponding multi-mode squeezed vacuum states |r〉 is obtained. Based
on this, the variances of the n-mode quadratures and the higher-order squeezing
in |r〉 are evaluated. In addition, we examine the violation of the Bell inequality
for |r〉 by using the formalism of Wigner representation.

PACS numbers: 42.50.−p, 03.65.Ud

1. Introduction

It has long been known that the bosonic realizations of the SU(1, 1) algebra have applications
in many branches of physics and group theory [1–4]. The generators of the SU(1, 1) algebra
are given by K0 and K± with the commutative relations

[K0,K±] = ±K±, [K−,K+] = 2K0. (1)

The SU(1, 1) Casimir operator is

C = K2
0 − 1

2 (K+K− + K−K+). (2)

In particular, the SU(1, 1) Lie algebra was widely used in quantum optics [5–7]. For example,
the SU(1, 1) coherent states, defined by Perelomov [8], have previously been discussed in
connection with squeezed states of a single-mode field and are a special case of the two-photon
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coherent states of Yuen [9], namely the squeezed vacuum state [10]. The single-mode bosonic
realization of SU(1, 1) is

K+ → a†2

2
, K− → a2

2
, K0 → 1

4
(2a†a + 1), (3)

where a† and a are the bosonic creation and annihilation operators, respectively; in this case
the Casimir operator is C = −3/16. The corresponding squeezing operator [10],

S1(r) = exp
[ r

2
(a†2 − a2)

]
= exp

(
a†2

2
tanh r

)
exp

[(
a†a +

1

2

)
ln sech r

]
exp

(
−a2

2
tanh r

)
, (4)

acting on the vacuum state |0〉 leads to the single-mode squeezed vacuum state

S1(r)|0〉 = (sech r)1/2 exp

(
a†2

2
tanh r

)
|0〉, (5)

where r is a real squeezing parameter. The two-mode bosonic realization for SU(1, 1) is

K+ → a
†
1a

†
2, K− → a1a2, K0 → 1

2

(
a
†
1a1 + a

†
2a2 + 1

)
, (6)

with the Casimir operator C = [(
a
†
1a1 − a

†
2a2
)2 − 1

]/
4, the two-mode squeezing operator

[11]

S2(r) = exp
[
r
(
a
†
1a

†
2 − a1a2

)]
= exp

(
a
†
1a

†
2 tanh r

)
exp
[(

a
†
1a1 + a

†
2a2 + 1

)
ln sech r

]
exp(−a1a2 tanh r) (7)

produces the two-mode squeezed vacuum state

S2(r)|00〉 = sech r exp
(
a
†
1a

†
2 tanh r

)|00〉. (8)

Similarly, for the n-mode case, the squeezing operator is given by [12, 13]

Sn(r) = exp[r(W+ − W−)], (9)

where

W+ = W
†
− = 2 − n

2n

n∑
j=1

a
†2
j +

2

n

n∑
j>k=1

a
†
j a

†
k, (10)

satisfying a closed SU(1, 1) Lie algebra,

[W−,W+] = 2W0, [W0,W+] = W+, [W0,W−] = −W−, (11)

with

W0 = 1

2

n∑
j=1

a
†
j aj +

n

4
. (12)

These squeezing operators may be called SU(1, 1) operators and the corresponding squeezed
vacuum states are named SU(1, 1) coherent states as well. Two interesting questions naturally
arise. Are there more generalized bosonic operator realization of SU(1, 1) generators for
generalized squeezing operators? If yes, how do we find them? To answer the second
question we recall the relation of the two-mode squeezing operator and the bipartite entangled
state representation, i.e. in [14] we have proved

S2(r) =
∫

d2η

μπ

∣∣∣∣ ημ
〉
〈η| , η = η1 + iη2, d2η = dη1 dη2, (13)

2
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where μ = er , and

|η〉 = exp
(− 1

2 |η|2 + ηa
†
1 − η∗a†

2 + a
†
1a

†
2

)|00〉 (14)

is the common eigenvectors of the relative position X1 − X2 and the total momentum P1 + P2

of two particles, i.e.

(X1 − X2)|η〉 =
√

2η1|η〉, (P1 + P2)|η〉 =
√

2η2|η〉. (15)

It is Einstein–Podolsky–Rosen who first used [X1 −X2, P1 +P2] = 0 to introduce the concept
of quantum entanglement [15]. Directly performing the integration over the ket-bra

∣∣ η

μ

〉〈η|
by virtue of the technique of integration within an ordered product (IWOP) of operators
[16] leads to the right-hand side of equation (7), which shows that the two-mode squeezing
operator S2(r) has a natural representation in the entangled state |η〉. Equation (13) shows
that by constructing generalized multi-partite entangled state representation we may find the
generalized bosonic operator realization of SU(1, 1) generators.

The organization of this paper is as follows. In section 2, we briefly review multi-
partite entangled state representations |χ, �ρ〉 and |ρ, �χ〉. In section 3, by constructing a
ket-bra integral in the |χ, �ρ〉 representation and using the IWOP technique, we derive the
generalized n-mode squeezing operator Un(r), which involves bosonic realization of the
generalized SU(1, 1) generators. We then discuss the transformation properties of a

†
i and ai

under the operation of Un(r) and give the interaction Hamiltonian generating such an Un(r). In
section 4, we evaluate the variances of the n-mode quadratures and higher order squeezing
for the generalized n-mode squeezed vacuum state Un(r)|�0〉 ≡ |r〉. Section 5 is devoted to
deriving the expression of the Wigner function of |r〉 and examining its violation of the Bell
inequality by using the formalism of Wigner representation in phase space.

2. Multi-partite entangled state representations

We begin with briefly introducing the multi-partite entangled state representations and listing
some of their properties. For an n-partite system, let

X =
n∑

j=1

εjXj (16)

denote the center-of-mass coordinate, where εj = mj/M
(
M = ∑n

j=1 mj

)
is the ratio of

each particle’s mass to the total mass,
∑n

j=1 εj = 1. X is permutable with the mass-weighted

relative momentum P1
ε1

− Pj

εj
(j = 2, 3, . . . , n), i.e.[

X,
P1

ε1
− Pj

εj

]
= 0 (17)

and [
P1

ε1
− Pj

εj

,
P1

ε1
− Pk

εk

]
= 0 (j 	= k), (18)

where Pj is the momentum of particle j . In [17], we have derived the common eigenvector of
X and P1

ε1
− Pj

εj
(j = 2, 3, . . . , n), in the n-mode Fock space expressed as

|χ, �ρ〉 = D1 exp

⎧⎨
⎩

√
2χ

λ

n∑
j=1

εja
†
j +

i
√

2

λ

n∑
j=2

ε2
j ρj

(
n∑

k=1

εka
†
k − λ

εj

a
†
j

)

+
n∑

j=1

(
1

2
− ε2

j

λ

)
a
†2
j − 2

λ

n∑
k>j=1

εkεja
†
ka

†
j

⎫⎬
⎭ |�0〉, (19)

3
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where �ρ ≡ ρ2, ρ3, . . . , ρn, λ ≡∑n
j=1 ε2

j and |�0〉 is the n-mode vacuum state

D1 ≡ π−n/4

√∏n
j=1 εj

λ
exp

⎡
⎣− 1

2λ

⎛
⎝χ2 +

n∑
j=2

ε2
j ρ

2
j

(
λ − ε2

j

)− 2
n∑

k>j=2

ε2
kε

2
j ρkρj

⎞
⎠
⎤
⎦ . (20)

In fact, noting

Xj = 1√
2

(
aj + a

†
j

)
, Pj = 1

i
√

2

(
aj − a

†
j

)
, (21)

one can check that |χ, �ρ〉 obeys the eigenvector equations

X|χ, �ρ〉 = χ |χ, �ρ〉 (22)

and (
P1

ε1
− Pj

εj

)
|χ, �ρ〉 = ρj |χ, �ρ〉 , j = 2, 3, . . . , n. (23)

Using |�0〉〈�0| =: exp
(−∑n

j=1 a
†
j aj

)
: (: : denotes normal ordering), and the integration with

an ordered product of operators (IWOP) technique [16], we can prove that |χ, �ρ〉 really spans
an orthogonal and complete set, i.e.

〈χ ′, �ρ ′|χ, �ρ〉 = δ(χ ′ − χ)δ(ρ ′
2 − ρ2) · · · δ(ρ ′

n − ρn) (24)

and ∫ +∞

−∞
dχ d �ρ |χ, �ρ〉 〈χ, �ρ| = 1, (25)

where d �ρ ≡ dρ2 dρ3 · · · dρn.
We may also introduce the common eigenvector |ρ, �χ〉 of the operator P = ∑n

j=1 εjPj

and
(

X1
ε1

− Xj

εj

)
,

P |ρ, �χ〉 = ρ|ρ, �χ〉 (26)

and (
X1

ε1
− Xj

εj

)
|ρ, �χ〉 = χj |ρ, �χ〉, j = 2, 3, . . . , n, (27)

with �χ ≡ χ2, χ3, . . . , χn and

|ρ, �χ〉 = D2 exp

⎧⎨
⎩ i

√
2ρ

λ

n∑
j=1

εja
†
j +

√
2

λ

n∑
j=2

ε2
jχj

(
n∑

k=1

εka
†
k − λ

εj

a
†
j

)

−
n∑

j=1

(
1

2
− ε2

j

λ

)
a
†2
j +

2

λ

n∑
k>j=1

εkεja
†
ka

†
j

⎫⎬
⎭ |�0〉, (28)

where

D2 ≡ π−n/4

√∏n
j=1 εj

λ
exp

⎡
⎣− 1

2λ

⎛
⎝ρ2 +

n∑
j=2

ε2
jχ

2
j

(
λ − ε2

j

)− 2
n∑

k>j=2

ε2
kε

2
jχkχj

⎞
⎠
⎤
⎦ , (29)

which obeys the completeness relation
∫ +∞
−∞ dρ d�χ |ρ, �χ〉〈ρ, �χ | = 1 with d�χ ≡ dχ2 dχ3 · · · dχn

as well.

4
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3. Generalized multi-mode SU (1, 1) generators and squeezing operator

As we have seen, in the bipartite case the ket-bra integration
∫ d2η

μπ

∣∣ η

μ

〉〈η| can produce
two-mode SU(1, 1) generators and form the two-mode squeezing operator (see equations
(6) and (7)), so we construct the following ket-bra integral in the |χ, �ρ〉 representation:

Un(μ) = μn/2
∫ +∞

−∞
dχ d �ρ|μχ,μ �ρ〉〈χ, �ρ|. (30)

3.1. Performing the above integration to find SU(1, 1) generators

Substituting equation (19) into equation (30) and considering |�0〉〈�0| =: exp
(−∑n

j=1 a
†
j aj

)
:,

after some lengthy but straightforward calculation we arrive at the following result by virtue
of the IWOP technique [16]:

Un(μ) =
∏n

j=1 εj

λ

(μ

π

)n/2
∫ +∞

−∞
dχ d �ρ : exp

⎧⎨
⎩−μ2 + 1

2λ

⎡
⎣χ2 +

n∑
j=2

ε2
j ρ

2
j

(
λ − ε2

j

)

− 2
n∑

k>j=2

ε2
kε

2
j ρjρk

⎤
⎦ +

√
2

λ

n∑
j=1

εj

(
μa

†
j + aj

)
χ +

i
√

2

λ

n∑
j=2

ε2
j ρj

×
[

n∑
k=1

εk

(
μa

†
k − ak

)− λ

εj

(
μa

†
j − aj

)]
+

n∑
j=1

(
1

2
− ε2

j

λ

)
a
†2
j

− 2

λ

n∑
k>j=1

εkεja
†
ka

†
j +

n∑
j=1

(
1

2
− ε2

j

λ

)
a2

j −2

λ

n∑
k>j=1

εkεjakaj −
n∑

j=1

a
†
j aj

⎫⎬
⎭ :

= sechn/2 r : exp

⎧⎨
⎩
⎡
⎣−1

2

n∑
j=1

(
1 − 2ε2

j

λ

)
a
†2
j +

2

λ

n∑
k>j=1

εkεja
†
ka

†
j

⎤
⎦ tanh r

+ (sech r − 1)

n∑
j=1

a
†
j aj +

⎡
⎣1

2

n∑
j=1

(
1 − 2ε2

j

λ

)
a2

j − 2

λ

n∑
k>j=1

εkεjakaj

⎤
⎦ tanh r

⎫⎬
⎭ :

≡ Un(r), (31)

where μ ≡ er , sech r = 2μ/(μ2 + 1), tanh r = (μ2 − 1)/(μ2 + 1) and we have used the
integral formula∫

dy exp(−fy2 + gy) =
(

π

f

)1/2

exp

(
g2

4f

)
, (f > 0). (32)

Using the formula exp[(eυ − 1)a†a] := eυa†a and letting

V+ = V
†
− = 1

2

n∑
j=1

(
2ε2

j

λ
− 1

)
a
†2
j +

2

λ

n∑
k>j=1

εkεja
†
ka

†
j , (33)

we can simplify equation (31) as

Un(r) = exp(V+ tanh r) exp(2W0 ln sech r) exp(−V− tanh r)

= exp[r(V+ − V−)], (34)

5
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where V+ and V− are just the generalized multi-mode bosonic realization of the SU(1, 1)

algebra,

[V−, V+] = 2W0, [W0, V+] = V+, [W0, V−] = −V−; (35)

here W 0 has been defined in equation (12). In particular, when ε1 = ε2 = · · · = εn = 1
n

and λ = 1
n
,

V+ = W+ (36)

and

Un(r) → Sn(r). (37)

Therefore, we can call Un(r) the generalized multi-mode SU(1, 1) squeezing operator. From
equations (24) and (30), we see

Un(μ)|χ, �ρ〉 = μn/2|μχ,μ �ρ〉; (38)

thus |χ, �ρ〉 is a natural representation for the squeezing operator Un(r).

3.2. The behavior under Un(r) transformation

In order to simplify the form of V+ in equation (33), we introduce the symmetric matrix G

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ε2
1

λ
− 1

2

λ
ε1ε2 · · · 2

λ
ε1εn

2

λ
ε2ε1

2ε2
2

λ
− 1 · · · 2

λ
ε2εn

...
...

. . .
...

2

λ
εnε1

2

λ
εnε2 · · · 2ε2

n

λ
− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (39)

which obeys

G2 = I,

n∑
j,k=1

Gjk = 2

λ
− n (40)

and

erG = I cosh r + G sinh r. (41)

With the help of G, V+ is re-expressed as

V+ = 1
2a

†
jGjka

†
k (42)

and

Un(r) = exp
[ r

2

(
a
†
jGjka

†
k − ajGjkak

)] ; (43)

here and henceforth the repeated indices imply the Einstein summation notation.
Therefore, due to equations (43) and (41), using the Baker–Hausdorff formula

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · , (44)

and
[
aj , a

†
k

] = δjk , we have

U−1
n (r)ajUn(r) = aj cosh r + a

†
kGkj sinh r (45)

6
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and

U−1
n (r)a

†
jUn(r) = a

†
j cosh r + akGkj sinh r. (46)

It then follows

U−1
n (r)XjUn(r) = Xj cosh r + XkGkj sinh r = Xk(e

rG)kj , (47)

and

U−1
n (r)PjUn(r) = Pj cosh r − PkGkj sinh r = Pk(e

−rG)kj . (48)

We can further check

U−1
n (r)XUn(r) = εjXj cosh r + εjXkGkj sinh r, (49)

where

εjXkGkj = εjGjkXk

= (ε1, ε2, . . . , εn)

⎛
⎜⎜⎜⎜⎜⎝

2ε2
1

λ
− 1 2

λ
ε1ε2 · · · 2

λ
ε1εn

2
λ
ε2ε1

2ε2
2

λ
− 1 · · · 2

λ
ε2εn

...
...

. . .
...

2
λ
εnε1

2
λ
εnε2 · · · 2ε2

n

λ
− 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎠

= ε1

[(
2ε2

1

λ
− 1

)
X1 +

2

λ
ε1ε2X2 + · · · +

2

λ
ε1εnXn

]

+ ε2

[
2

λ
ε2ε1X1 +

(
2ε2

2

λ
− 1

)
X2 + · · · +

2

λ
ε2εnXn

]

+ · · · + εn

[
2

λ
εnε1X1 +

2

λ
εnε2X2 + · · · +

(
2ε2

n

λ
− 1

)
Xn

]

= (ε1X1 + ε2X2 + · · · + εnXn)

(
2ε2

1

λ
− 1 +

2ε2
2

λ
+ · · · +

2ε2
n

λ

)
= X; (50)

in the last step we have used λ ≡∑n
j=1 ε2

j . Thus U−1
n (r)XUn(r) = μX, as expected. In fact,

considering equations (22), (24) and (25), we can prove that

U−1
n (r)XUn(r) = μn

∫ +∞

−∞
dχ d �ρ|χ, �ρ〉〈μχ,μ �ρ|X

∫ +∞

−∞
dχ ′ d �ρ ′|μχ ′, μ �ρ ′〉〈χ ′, �ρ ′|

= μnμχ

∫ +∞

−∞
dχ d �ρ|χ, �ρ〉〈μχ,μ �ρ|

∫ +∞

−∞
dχ ′ d �ρ ′|μχ ′, μ �ρ ′〉〈χ ′, �ρ ′|

= μ

∫ +∞

−∞
dχ d �ρ|χ, �ρ〉〈χ, �ρ|χ

= μX. (51)

3.3. The interaction Hamiltonian

Next, we seek the interaction Hamiltonian which can generate such a Un(r). For this purpose,
we differentiate the two sides of equation (43) with respect to t and obtain

i
∂Un(r)

∂t
= i

2

(
a
†
jGjka

†
k − ajGjkak

)∂r

∂t
Un(r), (52)

7
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with Un(r)|t=0 = 1, so the interaction Hamiltonian is

HI(t) = i

2

[
a
†
jGjka

†
k − ajGjkak

]∂r

∂t
. (53)

Such a dynamic process may happen in some 2n-wave mixing processes; for the four-wave
mixing we refer to the pioneering paper of Yuen and Shapiro [18].

4. Generalized multi-mode SU (1, 1) squeezed vacuum states

Acting the operator Un(r) in equation (31) on the n-mode vacuum state |�0〉 and using
: F
(
a
†
i , aj

)
: |�0〉 = F

(
a
†
i , 0
)|�0〉, we obtain the n-mode squeezed vacuum state

|r〉 ≡ Un(r)|�0〉 = sechn/2 r exp(V+ tanh r)|�0〉, (54)

where V+ has been defined in equation (33). Now we evaluate the variances of two n-mode
quadratures which are defined as [10]

X0 = 1√
2n

n∑
j=1

Xj, P0 = 1√
2n

n∑
j=1

Pj , (55)

which obey the relations

[X0, P0] = 1
2 i (56)

and

〈(�X0)
2〉〈(�P0)

2〉 � 1
16 , (57)

where 〈(�X0)
2〉 ≡ 〈X2

0

〉−〈X0〉2. Due to equations (47) and (48), we know that the expectation
values of X0 and P0 in |r〉, 〈r|X0|r〉 = 〈r|P0|r〉 = 0, so their variances are

〈(�X0)
2〉 = 〈r|X2

0|r〉 = 〈�0|U−1
n (r)X0Un(r)U

−1
n (r)X0Un(r)|�0〉

= 1

2n

n∑
j=1

(erG)kj

n∑
i=1

(erG)li〈�0|XkXl|�0〉

= 1

4n

n∑
i,j=1

(e2rG)ij (58)

and

〈(�P0)
2〉 = 〈r|P 2

0 |r〉 = 1

2n

n∑
j=1

(e−rG)kj

n∑
i=1

(e−rG)li〈�0|PkPl|�0〉

= 1

4n

n∑
i,j=1

(e−2rG)ij . (59)

According to equation (40),
n∑

j,k=1

(e2rG)jk =
∞∑
l=0

(2r)l

l!

n∑
j,k=1

(Gl)jk

= n cosh 2r + (
2

λ
− n) sinh 2r

= 1

λ
e2r +

(
n − 1

λ

)
e−2r , (60)
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Figure 1. Variances of quadratures in the two-mode state |r〉 (n = 2) as a function of r for different
parameters εi and λ as follows: ε1 = ε2 = 1

2 , λ = 1
2 (solid line); ε1 = 1

3 , ε2 = 2
3 , λ = 5

9 (dashed

line) and ε1 = 1
4 , ε2 = 3

4 , λ = 5
8 (dotted line).

so

〈(�X0)
2〉 = 1

4nλ
e2r +

(
1

4
− 1

4nλ

)
e−2r , (61)

and

〈(�P0)
2〉 = 1

4nλ
e−2r +

(
1

4
− 1

4nλ

)
e2r . (62)

Because λ ≡ ∑n
j=1 ε2

j , εj = mj/M < 1,
∑n

j=1 εj = 1, according to the well-known

inequality
√∑n

j=0 ε2
j

n
�

∑n
j=0 εj

n
, i.e. 1

n
� λ < 1, we have

〈(�X0)
2〉〈(�P0)

2〉 = 1

16
− 1

8nλ
+

1

8n2λ2
+

(
1

8nλ
− 1

8n2λ2

)
cosh 4r

� 1

16
, (63)

which agrees with equation (57). Especially, when ε1 = ε2 = · · · = εn = 1
n

→ λ = 1
n

, both
equations (61) and (62) recover as the standard form

〈(�X0)
2〉 = 1

4 e2r , 〈(�P0)
2〉 = 1

4 e−2r . (64)

In figures 1 and 2, we plot the graph of the variances 〈(�X0)
2〉 and 〈(�P0)

2〉 in the state |r〉
for the n = 2 and n = 3 cases, respectively. It is shown from figures 1 and 2 that the variances
are sensitive to the different parameters εi and λ and for r > 0, 〈(�X0)

2〉 is always more than
1
4 and 〈(�P0)

2〉 is always less than 1
4 , while for r < 0 the case is quite the contrary. Thus, for

the generalized states |r〉, there exists a squeezing effect.
The concept of higher-order squeezing [19] is another aspect for revealing nonclassical

characters of a quantum state. When the 2m-th moment in a state is less than that in the
vacuum state, this state is said to be squeezed to order 2m. Using equation (55), we now
calculate the 2m-th moment of the n-mode quadrature X0 in the state |r〉,

〈(�X0)
2m〉 = 〈r|(�X0)

2m|r〉 = 〈�0|U−1
n (r)(�X0)

2mUn(r)|�0〉

=
(

1

4n

)m

〈�0|
⎧⎨
⎩�

n∑
j=1

[
(erG)jk

(
ak + a

†
k

)]⎫⎬⎭
2m

|�0〉. (65)

9
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Figure 2. Variances of quadratures in the three-mode state |r〉 (n = 3) as a function of r for
different parameters εi and λ as follows: ε1 = ε2 = ε3 = 1

3 , λ = 1
3 (solid line); ε1 = ε2 = 1

4 ,

ε3 = 1
2 , λ = 3

8 (dashed line) and ε1 = 1
6 , ε2 = 1

3 , ε3 = 1
2 , λ = 7

18 (dotted line).

Note that the formula [20]

(�F)2m =
m∑

k=0

(2m)!

(2m − 2k)!k!
: (�F)2m−2k :

(∑n
j=1 ξj ζj

2

)k

, (66)

where �F ≡ F − 〈F 〉 with F =∑n
j=1

(
ξjaj + ζja

†
j

)
. Letting Q =∑n

j=1

[
(erG)jk

(
ak + a

†
k

)]
and using equation (60), we obtain

(�Q)2m =
m∑

k=0

(2m)!

(2m − 2k)!k!
: (�Q)2m−2k :

(
1
λ

e2r +
(
n − 1

λ

)
e−2r

2

)k

. (67)

By substituting equation (67) into equation (65), and using 〈�0|(�Q)2m−2k|�0〉 = δmk ,
equation (67) becomes

〈(�X0)
2m〉 =

(
1

4

)m

(2m − 1)!!

(
1

nλ
e2r +

(
1 − 1

nλ

)
e−2r

)m

, (68)

where (2m − 1)!! = 1 · 3 · 5 · · · (2m − 1). Similarly, we have

〈(�P0)
2m〉 =

(
1

4

)m

(2m − 1)!!

(
1

nλ
e−2r +

(
1 − 1

nλ

)
e2r

)m

. (69)

It is clear that when m = 1, equations (68) and (69) reduce to equations (61) and (62),
respectively. In order to see clearly the variations of the 2m-th moment of quadratures in
|r〉, the figures are plotted in figure 3 for several different m values, respectively, where we
only consider the three-mode case, namely, n = 3. From figure 3, for the 4th moment
of quadratures, when r > 0 (r < 0), (�X0)

4 > 3
16

(
(�X0)

4 < 3
16

)
and (�P0)

4 < 3
16(

(�P0)
4 > 3

16

)
, which implies that |r〉 is squeezed to ordered 4. In fact, for the other case,

the results are similar, so |r〉 is squeezed not merely to the second order but to all higher
orders.

5. Violation of the Bell inequality for the state |r〉
In this section, we examine the violation of the Bell inequality for the state |r〉 by using
the formalism of the Wigner representation in phase space based on the parity operator and

10
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Figure 3. 2m-th moment of quadratures in the three-mode state |r〉 (n = 3) as a function of r for
several different m = 2, 3, 4 values, respectively.

the displacement operation. Wigner function representation of the Bell inequality has been
developed using a parity operator as a quantum observable [21–23].

For the multi-mode system, the correlation function is the expectation of the operator

�(�α) = n⊗
j=1

�j(αj ) = n⊗
j=1

Dj(αj )(−1)Nj D
†
j (αj ), (70)

which is an equivalent definition of the Wigner operator [21–24]; the corresponding Wigner
function is

W(�x, �p) = W(�α) = 1

πn
〈�(�α)〉, (71)

where �x ≡ (x1, x2, . . . , xn), �p ≡ (p1, p2, . . . , pn), �α = 1√
2
(�x + i�p) ≡ (α1, α2, . . . , αn)

and Dj(αj ) = exp
(
αja

†
j − α∗

j aj

)
is a displacement operator. (−1)Nj corresponds to the

measurement of an even (+1) or an odd (−1) number of photons in mode j. Within the
framework of local realistic theories, the Wigner representation of the Bell inequality is of the
form [25–27]

|B(n)| � 2, (72)

where B(n) is a combination of W(�α). For example, for the two-mode case, i.e. n = 2, the
Bell inequality is expressed as

B(2) = π2[W(α1, α2) + W(α′
1, α2) + W(α1, α

′
2) − W(α′

1, α
′
2)], (73)

while for n = 3,

B(3) = π3[W(α1, α2, α
′
3) + W(α1, α

′
2, α3) + W(α′

1, α2, α3) − W(α′
1, α

′
2, α

′
3)]. (74)

In order to examine the violation of the Bell inequality for the state |r〉, we first calculate
the Wigner function of the state |r〉. Remember that the Weyl ordered form of the n-mode
Wigner operator is expressed as [28]

�(�x, �p) = n⊗
j=1

�j(xj , pj ) = :
:

δ(�x − �X)δ(�p − �P)
:
:

(75)

where
˜
�X ≡ (X1, X2, . . . , Xn),

˜
�P ≡ (P1, P2, . . . , Pn) and : :

: : denotes the Weyl ordering. The
normally ordered form of �(�x, �p) is [24]

�(�x, �p) = 1

πn
: exp[−(�x − �X)2 − (�p − �P)2] : . (76)

Then according to the Weyl ordering invariance under similar transformations [29] and the
Weyl quantization rule, using equations (47) and (48), we have

11
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U−1
n (r)�(�x, �p)Un(r) = :

:
δ[�x − U−1

n (r) �XUn(r)]δ[�p − U−1
n (r) �PUn(r)]

:
:

= :
:

δ(�x − erG �X)δ(�p − e−rG �P)
:
:

= :
:

δ(e−rG�x − �X)δ(erG �p − �P)
:
:

= �(e−rG�x, erG �p). (77)

Thus using equations (76) and (77), the Wigner function of |r〉 is

W(�x, �p) = 〈�0|U−1
n (r)�(�x, �p)Un(r)|�0〉

= 1

πn
〈�0| : exp[−(e−rG�x − �X)2 − (erG �p − �P)2] : |�0〉

= 1

πn
exp[−xj (e

−2rG)jkxk − pj (e
2rG)jkpk]. (78)

Considering equations (39) and (41) and xj = 1√
2
(αj + α∗

j ), pj = 1
i
√

2
(αj − α∗

j ),
equation (78) can be rewritten as

W(�x, �p) = 1

πn
exp

⎡
⎣−

n∑
j=1

(
x2

j + p2
j

)
cosh 2r +

n∑
j=1

(
2ε2

j

λ
− 1

) (
x2

j − p2
j

)
sinh 2r

+
4

λ

n∑
j>k=1

εj εk(xjxk − pjpk) sinh 2r

⎤
⎦

= 1

πn
exp

⎡
⎣−2

n∑
j=1

|αj |2 cosh 2r +
n∑

j=1

(
2ε2

j

λ
− 1

) (
α2

j + α∗2
j

)
sinh 2r

+
4

λ

n∑
j>k=1

εj εk

(
αjαk + α∗

j α
∗
k

)
sinh 2r

⎤
⎦ ≡ W(�α). (79)

Especially, when ε1 = ε2 = · · · = εn = 1
n

→ λ = 1
n

,

Wn(�α) = 1

πn
exp

⎡
⎣−2

n∑
j=1

|αj |2 cosh 2r +
4

n

n∑
j>k=1

(
αjαk + α∗

j α
∗
k

)
sinh 2r

+

(
2

n
− 1

) n∑
j=1

(
α2

j + α∗2
j

)
sinh 2r

⎤
⎦ , (80)

which is the same as the result of equation (16) given in [12].
For the n = 2 case, we examine the violation of the Bell inequality where ε1 = ε2 = 1

2 ,
α1 = α2 = 0 and α′

1 = −α′
2 = b (b is a positive constant associated with the displacement

magnitude). From these quantities, considering equations (73) and (80) and in the limit of
large r (cosh 2r  e−2r/2) as well as small b, we obtain the following equation:

B(2) = π2[W(0, 0) + W(b, 0) + W(0,−b) − W(b,−b)]

= 1 + 2 exp(−2b2 cosh 2r) − exp(−4b2 e2r )

 1 + 2 exp(−b2 e2r ) − exp(−4b2 e2r ), (81)

12
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Figure 4. Violation of the Bell inequality B(3) for the three-mode state |r〉 ( n = 3) by using
parity measurements with ε1 = ε2 = ε3 = 1

3 , α1 = α2 = α′
3 = 0, α3 = −b and α′

1 = α′
2 = b,

where b = 0.05 (solid line), b = 0.5 (dashed line) and b = 3 (dotted line).

which is maximized for b2 e2r = 1
3 ln 2: B(2)max = 2.19. This is a clear violation of the

inequality |B(2)| � 2.
Taking n = 3 as another example, from equation (74) the Bell inequality equation has

12 variables, and it is highly nontrivial to find the global maximum values of B(3) for all 12
variables. Fortunately, some local maximum values which violate the Bell inequality can be
found numerically using the method of steepest descent. For this purpose, in figure 4 we plot
the maximal Bell violation as a function of r, where ε1 = ε2 = ε3 = 1

3 , α1 = α2 = α′
3 = 0,

α3 = −b and α′
1 = α′

2 = b. It is clear from figure 4 that the maximal-Bell violation increases
with the squeezing parameter |r| with r < 0 and the maximal value of B(3) reaches 3, which
implies that the Bell inequality for the three-mode case is violated. These results can be
confirmed analytically. In fact, we put the above-chosen combinations into equation (74). For
large |r| with r < 0, cosh 2r → e−2r/2 and sinh 2r → −e−2r/2. After some calculation, B(3)

equals 3 − exp
(− 8

3 e−2rb2
)
. When e−2rb2 is large enough, B(3) → 3.

6. Conclusions

In summary, by constructing the generalized multi-partite entangled state representation and
introducing the ket-bra integral in this representation, we find a new set of generalized bosonic
realization of the SU(1, 1) algebra, which can compose the generalized multi-mode squeezing
operator Un(r). The intrinsic relation between the multi-mode entangled states of continuum
variables and squeezing operator is clearly shown. The explicit multi-mode squeezed vacuum
state |r〉 is obtained; the variances of the n-mode quadratures and higher-order squeezing for |r〉
are examined; the violation of the Bell inequality of |r〉 is examined. Finally, we mention that
the new squeezing operator may be applied to the quantum theory of multi-photon absorption
and emission in nonlinear optical processes, or tackling Bose–Einstein condensation in dilute
gases, or deriving the ground state of trapped bosons, or obtaining collective modes in nuclear
physics.
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